10021acsbiomaterialsc01098-v

Материал из ТОГБУ Компьютерный Центр
Версия от 03:34, 15 марта 2024; Signjail43 (обсуждение | вклад) (10021acsbiomaterialsc01098-v)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Epub 2022 Jan 11.Engineering Vascularizing Electrospun Dermal Grafts by Integrating Fish Collagen Fishery Sciences, Kolkata 700037, India.Animal and Fishery Sciences, Kolkata 700037, India.Utilizing bioactive molecules from organic sources in combination with inorganic materials for enhanced tissue regeneration has been a focus of recent scientific advancements. Some recent studies showed the potential of some specialized bioactive glass for healing of soft tissues; the role of Rohu (Labeo rohita) skin-derived collagen, a biopolymer in tissue regeneration and cutaneous healing, is yet to be established. So, we have fabricated four different types of electrospun mats as wound dressing materials/dermal grafts by combining locally sourced fish (Rohu) skin-derived collagen with novel composition of bioactive glass (Fcol/BAG) without and with dopants (3% and 5% Cu and Co, respectively and their binary) aimed at achieving an accelerated wound healing.

FTIR and EDX mapping indicated successful integration of collagen and ion-doped bioactive glass in electrospun mats. Microfibers' architectural features and composition provided a cytocompatible and nontoxic environment conducive to adhesion, spreading, and proliferation of human dermal fibroblasts in vitro; in addition, they were hemocompatible with rabbit red blood cells. Better cutaneous wound healing in rabbits was achieved by treating with Fcol/CoBAG and Fcol/CuCoBAG microfibers with respect to improved wound closure, well-formed continuous epidermis, higher wound maturity, and regulated deposition of extracellular matrix components; mature collagen and elastin. Notably, a significantly (p < 01) higher density of blood vessels/positive CD 31 staining was observed in fish collagen/ion-doped bioactive glass microfibrous mat treated wounds suggesting efficient neo-vascularization during early stages of the healing process particularly attributable to copper and cobalt ions in the doped bioactive glass. Enhanced vascularizing ability of these engineered dermal composite grafts/wound dressings along with efficient remodeling of cutaneous structural components (ECM) could collectively be ascribed to bioactive properties of bioactive glass and stimulatory roles of copper, cobalt ions, and fish collagen. Our study demonstrates that a fish collagen/Cu and Co-doped bioactive glass microfibrous mat could potentially be used as a low-cost dressing material/dermal graft for augmented cutaneous wound healing.Processing of procollagen types III and I in cultured bovine smooth muscle Gerstenfeld L, Beldekas JC, Sonenshein GE, Franzblau C.

The processing of type III and type I procollagen molecules in cultured bovine aortic smooth muscle cells was investigated. The molecular identities of the processing intermediates of type III and type I procollagen were characterized by analysis of the radioactive collagenous components using mammalian collagenase and pepsin digestions and cyanogen bromide peptide mapping. The results indicate that the processed intermediates for procollagen type III and type I are their respective pC components. Although the processing pathways for both collagen types are the same, data from pulse-chase experiments suggest that the rates at which the processing occurs are different. Type I procollagen is processed more rapidly to its intermediate than is type III procollagen. The type I pC intermediate is almost completely processed to alpha-chains and a significant portion of these fully processed molecules remains in a soluble form even after 11 h. In the same time period, the type III pC intermediate is slowly converted to alpha-chains.

Since beta-aminopropionitrile was not employed in these studies, significant accumulation of collagen chains into the insoluble extracellular matrix was observed during the chase period.Streptococcus pneumoniae binds collagens and C1q via the SSURE repeats of the The binding of Streptococcus pneumoniae to collagen is likely an important step in the pathogenesis of pneumococcal infections, but little is known of the underlying molecular mechanisms. squalane cleanser repeats (SSURE) are highly conserved protein domains present in cell wall adhesins from different Streptococcus species. We find here that SSURE repeats of the pneumococcal adhesin plasminogen and fibronectin binding protein B (PfbB) bind to various types of collagen. Moreover, deletion of the pfbB gene resulted in a significant impairment of the ability of encapsulated or unencapsulated pneumococci to bind collagen. Notably, what is squalane is also bound to the complement component C1q that bears a collagen-like domain and promotes adherence of pneumococci to host cells by acting as a bridge between bacteria and epithelial cells. Accordingly, deletion of PfbB or pre-treatment with anti-SSURE antibodies markedly decreased pneumococcal binding to C1q as well as C1q-dependent adherence to epithelial and endothelial cells.

Further data indicated that C1q promotes pneumococcal adherence by binding to integrin α2 β1 . In conclusion, our results indicate that the SSURE domains of the PfbB protein promote interactions of pneumococci with various types of collagen and with C1q. These repeats may be useful targets in strategies to control S. pneumoniae infections.Conflict of interest statement: Concetta Beninati and Giuseppe Teti act as scientific advisors for, respectively, Scylla Biotech Srl.