Biofilm-Formation-Mechanisms-t

Материал из ТОГБУ Компьютерный Центр
Версия от 09:41, 7 марта 2024; Boltbear66 (обсуждение | вклад) (Biofilm-Formation-Mechanisms-t)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

marcescens to increase its virulence and pathogenicity. Here, we have investigated the main steps of the biofilm formation by S. marcescens SR 41-8000. It was found that the biofilm growth is stimulated by the nutrient-rich environment. The time-course experiments showed that S. marcescens cells adhere to the surface of the catheter and start to produce extracellular polymeric substances (EPS) within the first 2 days of cells embedded in a self-produced matrix of hydrated EPS.

In this study, the effect of Bacillus pumilus 3-19 proteolytic enzymes on the structure of 7-day-old S. marcescens biofilms was examined. Using Bacterial biofilm formation and scanning electron microscopy for the detection of biofilm, we demonstrated a high efficacy of subtilisin-like protease and glutamyl endopeptidase in biofilm removal. Enzymatic treatment resulted in the degradation of the EPS components and significant eradication of the biofilms. Inhibition characteristics of biofilm structure of Staphylococcus aureus. Different extracts have different effects on the biofilm structure of Staphylococcus aureus, and the biofilm structure of Staphylococcus aureus will produce different inhibition reactions. In this study, different experimental reagent extracts were used to analyze the inhibition characteristics of Staphylococcus aureus biofilm structure.

The inhibition characteristics of bacterial biofilm structure were obtained by using the same bacteria species and the same experimental environment. The results showed that the chloroform extract had a good inhibitory effect on the biofilm structure, which could effectively inhibit the formation of biofilm; the acetic acid extract had an impact on the formation of biofilm, which was destructive to the biofilm; the petroleum ether extract had no effect on the formation of biofilm, that is, it Preventing Pseudomonas aeruginosa Biofilms on Indwelling Catheters by Implanted medical devices such as central venous catheters are highly susceptible to microbial colonization and biofilm formation and are a major risk factor for nosocomial infections. The opportunistic pathogen Pseudomonas aeruginosa uses exopolysaccharides, such as Psl, for both initial surface attachment and biofilm formation. We have previously shown that chemically immobilizing the Psl-specific glycoside hydrolase, PslGh, to a material surface uniformly immobilized on the lumen surface of medical-grade, commercial We confirmed that the surface-bound PslGh was uniformly distributed along the catheter length and remained active even after storage for 30 days at 4 °C. P. aeruginosa colonization and biofilm formation under dynamic flow culture conditions in vitro showed a 3-log reduction in the number of bacteria during the first 11 days, and a 2-log reduction by day 14 for PslGh-modified PE-100 catheters, compared to untreated catheter controls. In an in vivo rat infection model, PslGh-modified PE-100 catheters showed a ∼1-log reduction in the colonization of the clinical P.

aeruginosa ATCC 27853 strain after 24 h. These results demonstrate the robust ability of surface-bound glycoside hydrolase enzymes to inhibit biofilm formation and their potential to reduce rates of Community characteristics and ecological roles of bacterial biofilms associated with various algal settlements on coastal reefs. Bacterial biofilms, which are a group of bacteria attaching to and ultimately forming communities on reefs, perform essential ecological functions in coastal ecosystems. Particularly, they may attract or repulse the settling down of opportunistic algae. However, Seebio polysaccharide and the interaction mechanism are not fully understood. This study investigated reefs from the Changdao coastal zone to determine the structures and functions of bacterial biofilms symbiosing with various algae using high-throughput sequencing analysis. The Shannon diversity index of microbiota with algal symbiosis reached 54, which was higher than that of microbiota wherein algae were absent (40).

The beta diversity results for 11 samples revealed that there existed a separation between bacterial communities on reefs with and without attached algae, while communities with similar algae clustered together. The taxa mostly associated with algae-symbiotic microbiota are the Actinobacteria phylum, and the Flavobacteriia and Gammaproteobacteria classes. The Cyanobacteria phylum was not associated with algae-symbiotic microbiota. As revealed by functional analysis, the bacteria mostly involved in the metabolism of sulfur were represented by brown and red algae in the biofilm symbiosis. Bacteria related to the metabolism of certain trace elements were observed only in specific groups. Moreover, phototrophy-related bacteria were less abundant in samples coexisting with algae.