-A-noblue-LED-lamp-was-designed-and-a-prototype-was-fabricated-q

Материал из ТОГБУ Компьютерный Центр
Перейти к: навигация, поиск

For both solutions, the spectral power distribution (SPD) was measured, the colorimetric values were calculated, and a visual comparison using Gretagmacbeth colorcharts was performed. The visual comparison showed that the LED bulb was better to render colors despite a low color rendering index (CRI). Furthermore, the LED bulb was tested in a photolithography room and there was no exposure to the photoresist even after 168 hours illumination.Large-Area Sub-Wavelength Optical Patterning via Long-Range Ordered Polymer Lens Science and Engineering, Nanyang Technological University , Singapore 639798, Fabrication of large-area, highly orderly, and high-resolution nanostructures in a cost-effective fashion prompts advances in nanotechnology. Herein, for the first time, we demonstrate a unique strategy to prepare a long-range highly regular polymer lens from photoresist nanotrenches based templates, which are obtained from underexposure. The relationship between exposure dose and the cross-sectional morphology of produced photoresist nanostructures is revealed for the first time.

The polymer lens arrays are repeatedly used for rapid generation of sub-100 nm nanopatterns across centimeter-scale areas. The light focusing properties of the nanoscale polymer lens are investigated by both simulation and experiment. It is found that the geometry, size of the lens, and the exposure dose can be deployed to adjust the produced feature size, spacing, and shapes. Because the polymer lenses are derived from top-down photolithography, the nearly perfect long-range periodicity of produced nanopatterns is ensured, and the feature shapes can be flexibly designed. Because this nanolithographic strategy enables subwavelength periodical nanopatterns with controllable feature size, geometry, and composition in a cost-effective manner, it can be optimized as a viable and potent nanofabrication tool for various technological applications.Cove-Edged Nanographenes with Localized Double Bonds.Alicante, Universidad de Alicante, 03080, Alicante, Spain.

International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, The efficient synthesis and electronic properties of two large-size cove-edged nanographenes (NGs), CN1 and CN2, are presented. X-ray crystallographic analysis reveals a contorted backbone for both molecules owing to the steric repulsion at the inner cove position. Noticeably, the dominant structures of these molecules contain four (for CN1) or six (for CN2) localized C=C double bonds embedded in nine (for CN1) or twelve (for CN2) aromatic sextet rings according to Clar's formula, which is supported by bond length analysis and theoretical (NICS, ACID) calculations. Furthermore, Raman spectra exhibit a band associated with the longitudinal CC stretching mode of olefinic double bonds. Owing to the existence of the additional olefinic bonds, both compounds show a small band gap (14 eV for CN1 and 17 eV for CN2). They also display moderate fluorescence quantum yield (35 % for CN1 and 50 % for CN2) owing to the contorted geometry, which can Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange.Clarkson Ave.

, Potsdam, NY 13699-5810, USA. Electronic address: Clarkson Ave., Potsdam, NY 13699-5810, USA. Electronic address: Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant.

This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium.Recent Advances on Stimuli-Responsive Combination Therapy against Multidrug-Resistant Bacteria and Biofilm.The widespread occurrence of infections from multidrug-resistant (MDR) bacteria is a global health problem. It has been amplified over the past few years due to the increase in adaptive traits in bacteria and lack of advanced treatment strategies. Because of the low bioavailability and limited penetration at infected sites, the existing antibiotics often fail to resist bacterial growth. Recently, developed 6-butyl-n-hydroxynaphthimide trifluoromethanesulfonic acid as a Precursor for Naphthalimide Derivatives -responsive drug delivery systems and combinatorial therapeutic systems based on nanoparticles, metal-organic frameworks, hydrogels, and organic chromophores offer the ability to improve the therapeutic efficacy of antibiotics by reducing drug resistance and other side effects.