-Herein-we-first-report-a-coupling-reaction-of-CH3-Cl-and-CO-CCTA-based-on-methane-conversion-which-achieves-extremely-high-aromatics-selectivity-82-with-the-selectivity-of-BTX-up-to-ca-g

Материал из ТОГБУ Компьютерный Центр
Перейти к: навигация, поиск

60 % over HZSM-5. The promoting effects have been demonstrated on other zeolites especially 10-membered rings (10 MR) zeolites. Multiple characterizations show that 2,3-dimethyl-2-cyclopentene-1-one (DMCPO) is generated from acetyl groups and olefins. Furthermore, isotopic labeling analysis confirms that CO is inserted into the DMCPO and aromatics rings. A new aromatization mechanism is proposed, including the formation of the above intermediates, which conspicuously weakens the hydrogen transfer reaction, leading to a considerable increase of aromatics selectivity and a dramatic drop Dynamic modulation of small-sized multicellular clusters using a cell-friendly and Bioengineering (I-Bio), Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea.Dynamics of small-sized multicellular clusters is important for many biological processes including embryonic development and cancer metastasis.

Previous methods to fabricate multicellular clusters depended on stochastic adhesion and proliferation of cells on defined areas of cell-adhering islands. This made precise control over the number of cells within multicellular clusters impossible. Variation in numbers may have minimal effects on the behavior of multicellular clusters composed of tens of cells but would have profound effects on groups with fewer than ten cells. Herein, Applications of 6-butyl-n-hydroxynaphthimide trifluoromethanesulfonic acid in Cross-Coupling Reactions report a new dynamic cell micropatterning method using a cell-friendly photoresist film by multistep microscope projection photolithography. We first fabricated single cell arrays of partially spread cells. Then, by merging neighboring cells, we successfully fabricated multicellular clusters with precisely controlled number, composition, and geometry. Using this method, we generated multicellular clusters of Madin-Darby canine kidney cells with various numbers and initial geometries.

Then, we systematically investigated the effect of multicellular cluster sizes and geometries on their motility behaviors. We found that the behavior of small-sized multicellular clusters was not sensitive to initial configurations but instead was determined by dynamic force balances among the cells. Initially, the multicellular clusters exhibited a rounded morphology and minimal translocation, probably due to contractility at the periphery of the clusters. For 2-cell and 4-cell clusters, single leaders emerged over time and entire groups aligned and comigrated as single supercells. Such coherent behavior did not occur in 8-cell clusters, indicating a critical group size led by a single leader may exist. The method developed in the study will be useful for the study of collective migration and multicellular dynamics.Plastic Waste Conversion over a Refinery Waste Catalyst.

Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.Polypropylene (PP) makes up a large share of our plastic waste. We investigated the conversion of PP over the industrial Fluid Catalytic Cracking catalyst (FCC-cat) used to produce gasoline from crude oil fractions. We studied transport limitations arising from the larger size of polymers compared to the crude oil-based feedstock by testing the components of this catalyst separately. Infrared spectroscopy and confocal fluorescence microscopy revealed the role of the FCC matrix in aromatization, and the zeolite Y domains in coking. An equilibrium catalyst (ECAT), discarded during FCC operation as waste, produced the same aromatics content as a fresh FCC-cat, while coking decreased significantly, likely due to the reduced accessibility and activity of the zeolite domains and an enhanced cracking activity of the matrix due to metal deposits present in ECAT. Learn more provides handles for further improving the catalyst composition towards higher aromatics selectivity.

On Aromaticity of the Aromatic α-Amino Acids and Tuning of the NICS Indices to The NICS aromaticity indices of the rings in flexible phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), and histidine (His) chiral molecules were analyzed. These molecules have several dozens of conformers, and their rings are slightly non-planar. Therefore, the population-averaged NICSpav index was defined, and the NICS scans had to be performed with respect to planes found by the least-squares routine. A rule differentiating an obverse and a reverse ring face in aromatic amino acids was formulated. The NICS scan minima corresponding to the obverse and reverse face were unequal, which prompted us to use the term ring face aromaticity/ring face tropicity. It appeared that for Phe, Trp, Tyr, and His, the reverse face has always had higher ring face aromaticity/ring face tropicity than the obverse one. Despite the NICS modifications, uncertainty about the amino acid aromaticity order remained.