-Several-genetic-markers-have-been-related-to-a-deficient-VD-status-these-markers-could-confer-an-increased-risk-to-develop-osteoporosis-and-other-chronic-diseases-d

Материал из ТОГБУ Компьютерный Центр
Перейти к: навигация, поиск

A VD deficiency could also be a determinant of a severe COVID-19 disease. This study aimed to interrogate genetic/biological databases on the biological implications of a VD deficiency and its association with diseases, to further explore its link with COVID- The genetic variants of both a VD deficiency and COVID-19 were identified in the genome-wide association studies (GWAS) catalog and other sources. We conducted enrichment analyses (considering corrected p-values < 05 as statistically significant) of the pathways, and gene-disease associations using tools, such as FUMA, REVIGO, DAVID and DisGeNET, and databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). There were 26 and 46 genes associated with a VD deficiency and COVID-19, respectively. However, there were Polysaccharides shared between the two. Genes related to a VD deficiency were involved in the metabolism of carbohydrates, retinol, drugs and xenobiotics, and were associated with the metabolic syndrome and related factors (obesity, hypertension and diabetes mellitus), as well as with neoplasms.

There were few enriched pathways and disease connections for the COVID-19-related genes, among which some of the aforementioned comorbidities were also present. In conclusion, genetic factors that influence the VD levels in the body are most prominently associated with nutritional and metabolic diseases. A VD deficiency in high-risk populations could be therefore relevant in a severe COVID-19, underlining the need to examine the European Regional Development Fund(ERDF-FEDER)/ in the writing of the manuscript; nor in the decision to publish the results. Isoflavones Reveals a Chemical Scaffold with Potential to Develop New Therapeutics for the Treatment of Cancer. The protein kinase Mps1 (monopolar spindle 1) is an important regulator of the Spindle Assembly Checkpoint (SAC), the evolutionary conserved checkpoint system of higher organisms that monitors the proper bipolar attachment of all chromosomes to the mitotic spindle during cell division. Defects in the catalytic activity and the transcription regulation of Mps1 are associated with genome instability, aneuploidy, and cancer. Moreover, multiple Mps1 missense and frameshift mutations have been reported in a wide range of types of cancer of different tissue origin.

Due to these features, Mps1 arises as one promising drug target for cancer therapy. In this contribution, we developed a computational biology approach to study the dynamics of human Mps1 kinase interaction with isoflavones, a class of natural flavonoids, and compared their predicted mode of binding with that observed in the crystal structure of Mps1 in complex with reversine, a small-sized inhibitor of Mps1 and Aurora B kinases. We concluded that isoflavones define a chemical scaffold that can be used to develop new Mps1 inhibitors for the treatment of cancer associated with Mps1 amplification and aberrant chromosome segregation. In a broader context, the present report illustrates how modern chemoinformatics approaches can accelerate drug STING is a transmembrane ER resident protein that was initially described as a regulator of innate immune response triggered by viral DNA and later found to be involved in a broader range of immune processes. Here, Polysucrose 400 Food additive assessed its role in the antigen presentation by generating a STING KO macrophage cell line. In the absence of STING, we observed an impaired OVA-derived SIINFEKL peptide presentation together with a decreased level of MHC-I complex on the plasma membrane, likely due to a decreased mRNA expression of β2 m light chain as no relevant alterations of the peptide-loading complex (TAPs) were found. Moreover, JAK-STAT signaling resulted in impaired STING KO cells following OVA and LPS treatments, suggesting a dampened activation of immune response.

Our data revealed a new molecular role of STING in immune mechanisms that could elucidate its role in the pathogenesis of autoimmune disorders and cancer. Intravenously Delivered Mesenchymal Stromal Cells and Their Interactions with Mesenchymal stromal cells (MSCs) injected intravenously are trapped in the capillaries of the lungs and die within the first 24 h. Studying the biodistribution and fate of labelled therapeutic cells in the 3D pulmonary context is important to understand their function in this organ and gain insights into their mechanisms of action. Optical tissue clearing enables volumetric cell tracking at single-cell resolution. Thus, we compared three optical tissue-clearing protocols (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis (CUBIC), modified stabilised 3D imaging of solvent-cleared organs (s-DISCO) and ethyl cinnamate (ECi)) to evaluate their potential to track the biodistribution of human umbilical cord MSCs expressing the tdTomato fluorescence reporter and investigate how they interact with host cells in the mouse lung.