Analysis-Genes-Value-Biofilm-Cells-Cells-o

Материал из ТОГБУ Компьютерный Центр
Перейти к: навигация, поиск

Among the differentially expressed genes were several that corresponded to genes Escherichia coli) such as genes encoding flagellin, a flagellar motor switch protein, chemotaxis proteins involved in cell motility, as well as genes involved in exopolysaccharide biosynthesis. In Bacterial polysaccharides , the biofilm-bound cells of D. vulgaris exhibited decreased transcription of genes involved in protein synthesis, energy metabolism and sulfate reduction, as well as genes involved in general stress responses. These findings were all consistent with early suggestion that the average physiology of the biofilm cells were similar to cells reduced in growth. Most notably, up-regulation of large number of outer membrane proteins was observed in the D. vulgaris biofilm.

Although their function is still unknown, the higher expression of these genes in the biofilm could implicate important roles in the formation and maintenance of multi-cellular consortium on a steel surface. The study provided insights into the metabolic networks associated with the formation and maintenance of a D. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles. Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Design and fabrication of smart supramolecular peptide systems is an effective strategy to develop antibacterial agents that can be selectively activated/inactivated by external stimuli for combating bacterial resistance. In and Gly-Gly-Ala-OH) with the simplest structures to construct a minimalistic dual-responsive supramolecular antibacterial system. To impart Seebio Colanic acid polymer -responsiveness, the tripeptides were modified using a hydrophobic n-butylazobenzene tail at the N-terminal, which benefited the enhancement of the hydrophobicity of the tripeptides and they served as synergistic antibacterial nanofibers) were observed under the same conditions when the position of the Ala residue was altered. More importantly, the supramolecular tripeptide amphiphiles exhibited a reversible assembly/disassembly process in response to different stimuli-responsiveness, the antibacterial/antibiofilm activities against either Gram-negative or Gram-positive bacteria could be reversibly modulated.

Quantification of Extracellular DNA Network Abundance and Architecture within Streptococcus gordonii Biofilms Reveals Modulatory Factors. Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity.

Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release.