Spermine-attenuates-substantial-glucoseinduced-myocardial-fibrosis-through-governing-the-mobile-or-portable-cycle-m

Материал из ТОГБУ Компьютерный Центр
Перейти к: навигация, поиск

In addition, metal-organic platform (MOF) materials are already widely looked into and also have recently been discovered to own tremendous prospective inside membrane divorce due to their consistent pore dimension and also designability. Especially, pure MOF motion pictures and MOF combined matrix filters (MMMs) would be the central from the "next generation" MOF resources. Even so, there are some tough difficulties with MOF-based membranes that affect splitting up performance. With regard to real MOF membranes, issues such as construction overall flexibility, defects, as well as materials inclination need to be addressed. In the mean time, presently there remain bottlenecks pertaining to MMMs such as MOF place, plasticization as well as aging of the polymer matrix, poor program being compatible, and so on. Herein, corresponding strategies are usually introduced to solve these complaints, including inhibiting construction freedom, regulating combination situations, along with raising the discussion involving MOF and also substrate. A number of high-quality MOF-based filters happen to be acquired according to they. All round, these kind of walls exposed preferred splitting up efficiency in both gasoline splitting up (e.gary., Carbon dioxide, H2, along with olefin/paraffin) as well as fluid splitting up (electronic.grams., drinking water filtering, organic solvent nanofiltration, as well as chiral divorce).High-temperature polymer-electrolyte membrane layer gas cells (HT-PEM FC) certainly are a very important type of gas cellular since they function with 150-200 °C, allowing using hydrogen toxified using Company. However, the need to increase steadiness along with other components regarding fuel diffusion electrodes still hinders his or her syndication. Anodes based on a sparring floor (self-supporting complete non-woven nanofiber content) involving carbon dioxide nanofibers (CNF) were served by the actual electrospinning technique coming from a polyacrylonitrile remedy as well as winter stabilizing and pyrolysis of the pad. To enhance their proton conductivity, Zr sea had been launched into the electrospinning answer. As a result, following subsequent buildup regarding Pt-nanoparticles, Zr-containing upvc composite anodes have been received. To enhance your proton conductivity of the nanofiber surface of the amalgamated anode along with reach HT-PEMFC far better performance, dilute remedies involving Nafion®, a PRI-724 price polymer-bonded regarding implicit microporosity (PIM-1) as well as N-ethyl phosphonated polybenzimidazole (PBI-OPhT-P) were chosen in order to coat the CNF area the first time. These anodes have been examined by electron microscopy along with analyzed inside membrane-electrode assembly regarding H2/air HT-PEMFC. The application of CNF anodes covered with PBI-OPhT-P may increase the HT-PEMFC overall performance.This work handles the contests with regards to the continuing development of "all-green" high-performance bio-degradable tissue layer materials based on poly-3-hydroxybutyrate (PHB) as well as a organic biocompatible practical component, iron-containing porphyrin, Hemin (Hmi) through modification and also surface area functionalization. A new facile and flexible approach depending on electrospinning (Ations) is actually innovative whenever changes in the PHB walls is conducted by the addition of minimal concentrations associated with Hmi (from 1 to five wt.%). Structure and performance with the resultant HB/Hmi membranes were studied by diverse physicochemical methods, including differential scanning calorimetry, X-ray analysis, scanning electron microscopy, etc. Modification of the PHB fibrous membranes with Hmi allows control over their quality, supramolecular structure, morphology, and surface wettability. As a result of this modification, air and liquid permeability of the modified electrospun materials markedly increases. The proposed approach provides preparation of high-performance all-green membranes with tailored structure and performance for diverse practical applications, including wound healing, comfort textiles, facial protective masks, tissue engineering, water and air purification, etc.Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.Humic, protein, and polysaccharide substances have been recognized as significant types of foulants in membrane systems. Despite the remarkable amount of research that has been performed on the interaction of these foulants, particularly humic and polysaccharide substances, with inorganic colloids in RO systems, little attention has been paid to the fouling and cleaning behavior of proteins with inorganic colloids in UF membranes. This research examined the fouling and cleaning behavior of bovine serum albumin (BSA) and sodium alginate (SA) with silicon dioxide (SiO2) and α-aluminum oxide (Al2O3) in individual and combined solutions during dead-end UF filtration. The results showed that the presence of SiO2 or Al2O3 in water alone did not cause significant fouling or a flux decline in the UF system. However, the combination of BSA and SA with inorganics was observed to have a synergistic effect on membrane fouling, in which the combined foulants caused higher irreversibility than individual foulants. Analysis of blocking laws demonstrated that the fouling mechanism shifted from cake filtration to complete pore blocking when the combined organics and inorganics were present in water, which resulted in higher BSA and SA fouling irreversibility. The results suggest that membrane backwash needs to be carefully designed and adjusted for better control of BSA and SA fouling with SiO2 and Al2O3.The occurrence of heavy metal ions in water is intractable, and it has currently become a serious environmental issue to deal with. The effects of calcining magnesium oxide at 650 °C and the impacts on the adsorption of pentavalent arsenic from water are reported in this paper. The pore nature of a material has a direct impact on its ability to function as an adsorbent for its respective pollutant. Calcining magnesium oxide is not only beneficial in enhancing its purity but has also been proven to increase the pore size distribution. Magnesium oxide, as an exceptionally important inorganic material, has been widely studied in view of its unique surface properties, but the correlation between its surface structure and physicochemical performance is still scarce. In this paper, magnesium oxide nanoparticles calcined at 650 °C are assessed to remove the negatively charged arsenate ions from an aqueous solution. The increased pore size distribution was able to give an experimental maximum adsorption capacity of 115.27 mg/g with an adsorbent dosage of 0.5 g/L. Non-linear kinetics and isotherm models were studied to identify the adsorption process of ions onto the calcined nanoparticles. From the adsorption kinetics study, the non-linear pseudo-first order showed an effective adsorption mechanism, and the most suitable adsorption isotherm was the non-linear Freundlich isotherm. The resulting R2 values of other kinetic models, namely Webber-Morris and Elovich, were still below those of the non-linear pseudo-first-order model. The regeneration of magnesium oxide in the adsorption of negatively charged ions was determined by making comparisons between fresh and recycled adsorbent that has been treated with a 1 M NaOH solution.Polyacrylonitrile (PAN) is a popular polymer that can be made into membranes using various techniques, such as electrospinning and phase inversion. Electrospinning is a novel technique that produces nonwoven nanofiber-based membranes with highly tunable properties. In this research, electrospun PAN nanofiber membranes with various concentrations (10, 12, and 14% PAN/dimethylformamide (DMF)) were prepared and compared to PAN cast membranes prepared by the phase inversion technique. All of the prepared membranes were tested for oil removal in a cross-flow filtration system. A comparison between these membranes' surface morphology, topography, wettability, and porosity was presented and analyzed. The results showed that increasing the concentration of the PAN precursor solution increases surface roughness, hydrophilicity, and porosity and, consequently, enhances the membrane performance. However, the PAN cast membranes showed a lower water flux when the precursor solution concentration increased. In general, the electrospun PAN membranes performed better in terms of water flux and oil rejection than the cast PAN membranes. The electrospun 14% PAN/DMF membrane gave a water flux of 250 LMH and a rejection of 97% compared to the cast 14% PAN/DMF membrane, which showed a water flux of 117 LMH and 94% oil rejection. This is mainly because the nanofibrous membrane showed higher porosity, higher hydrophilicity, and higher surface roughness compared to the cast PAN membranes at the same polymer concentration. The porosity of the electrospun PAN membrane was 96%, while it was 58% for the cast 14% PAN/DMF membrane.Membrane filtration technologies are the best available tools to manage dairy byproducts such as cheese whey, allowing for the selective concentration of its specific components, namely proteins. Their acceptable costs and ease of operation make them suitable for application by small/medium-scale dairy plants. The aim of this work is the development of new synbiotic kefir products based on sheep and goat liquid whey concentrates (LWC) obtained by ultrafiltration. Four formulations for each LWC based on a commercial kefir starter or traditional kefir, without or with the addition of a probiotic culture, were produced. The physicochemical, microbiological, and sensory properties of the samples were determined. Membrane process parameters indicated that ultrafiltration can be applied for obtaining LWCs in small/medium scale dairy plants with high protein concentration (16.4% for sheep and 7.8% for goats). Sheep kefirs showed a solid-like texture while goat kefirs were liquid. All samples presented counts of lactic acid bacteria higher than log 7 CFU/mL, indicating the good adaptation of microorganisms to the matrixes. Further work must be undertaken in order to improve the acceptability of the products. It could be concluded that small/medium-scale dairy plants can use ultrafiltration equipment to valorize sheep's and goat's cheese whey-producing synbiotic kefirs.It is now generally accepted that the role of bile acids in the organism is not limited to their participation in the process of food digestion. Indeed, bile acids are signaling molecules and being amphiphilic compounds, are also capable of modifying the properties of cell membranes and their organelles. This review is devoted to the analysis of data on the interaction of bile acids with biological and artificial membranes, in particular, their protonophore and ionophore effects. The effects of bile acids were analyzed depending on their physicochemical properties namely the structure of their molecules, indicators of the hydrophobic-hydrophilic balance, and the critical micelle concentration. Particular attention is paid to the interaction of bile acids with the powerhouse of cells, the mitochondria. It is of note that bile acids, in addition to their protonophore and ionophore actions, can also induce Ca2+-dependent nonspecific permeability of the inner mitochondrial membrane. We consider the unique action of ursodeoxycholic acid as an inducer of potassium conductivity of the inner mitochondrial membrane. We also discuss a possible relationship between this K+ ionophore action of ursodeoxycholic acid and its therapeutic effects.Lipoprotein particles (LPs) are excellent transporters and have been intensively studied in cardiovascular diseases, especially regarding parameters such as their class distribution and accumulation, site-specific delivery, cellular internalization, and escape from endo/lysosomal compartments. The aim of the present work is the hydrophilic cargo loading of LPs. As an exemplary proof-of-principle showcase, the glucose metabolism-regulating hormone, insulin, was successfully incorporated into high-density lipoprotein (HDL) particles. The incorporation was studied and verified to be successful using Atomic Force Microscopy (AFM) and Fluorescence Microscopy (FM). Single-molecule-sensitive FM together with confocal imaging visualized the membrane interaction of single, insulin-loaded HDL particles and the subsequent cellular translocation of glucose transporter type 4 (Glut4).In the present work, Pebax-1657, a commercial multiblock copolymer (poly(ether-block-amide)), consisting of 40% rigid amide (PA6) groups and 60% flexible ether (PEO) linkages, was selected as the base polymer for preparing dense flat sheet mixed matrix membranes (MMMs) using the solution casting method. Carbon nanofillers, specifically, raw and treated (plasma and oxidized) multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were incorporated into the polymeric matrix in order to improve the gas-separation performance and polymer's structural properties. The developed membranes were characterized by means of SEM and FTIR, and their mechanical properties were also evaluated. Well-established models were employed in order to compare the experimental data with theoretical calculations concerning the tensile properties of MMMs. Most remarkably, the tensile strength of the mixed matrix membrane with oxidized GNPs was enhanced by 55.3% compared to the pure polymeric membrane, and its tensile modulus increased 3.2 times compared to the neat one. In addition, the effect of nanofiller type, structure and amount to real binary CO2/CH4 (10/90 vol.%) mixture separation performance was evaluated under elevated pressure conditions. A maximum CO2/CH4 separation factor of 21.9 was reached with CO2 permeability of 384 Barrer. Overall, MMMs exhibited enhanced gas permeabilities (up to fivefold values) without sacrificing gas selectivity compared to the corresponding pure polymeric membrane.The origin of life possibly required processes in confined systems that facilitated simple chemical reactions and other more complex reactions impossible to achieve under the condition of infinite dilution. In this context, the self-assembly of micelles or vesicles derived from prebiotic amphiphilic molecules is a cornerstone in the chemical evolution pathway. A prime example of these building blocks is decanoic acid, a short-chain fatty acid capable of self-assembling under ambient conditions. This study explored a simplified system made of decanoic acids under temperatures ranging from 0 °C to 110 °C to replicate prebiotic conditions. The study revealed the first point of aggregation of decanoic acid into vesicles and examined the insertion of a prebiotic-like peptide in a primitive bilayer. The information gathered from this research provides critical insights into molecule interactions with primitive membranes, allowing us to understand the first nanometric compartments needed to trigger further reactions that were essential for the origin of life.In the presented study, films from tetragonal Li7La3Zr2O12 were obtained by electrophoretic deposition (EPD) for the first time. To obtain a continuous and homogeneous coating on Ni and Ti substrates, iodine was added to the Li7La3Zr2O12 suspension. The EPD regime was developed to carry out the stable process of deposition. The influence of annealing temperature on phase composition, microstructure, and conductivity of membranes obtained was studied. It was established that the phase transition from tetragonal to low-temperature cubic modification of solid electrolyte was observed after its heat treatment at 400 °C. This phase transition was also confirmed by high-temperature X-ray diffraction analysis of Li7La3Zr2O12 powder. Increasing the annealing temperature leads to the formation of additional phases in the form of fibers and their growth from 32 (dried film) to 104 μm (annealed at 500 °C). The formation of this phase occurred due to the chemical reaction of Li7La3Zr2O12 films obtained by electrophoretic deposition with air components during heat treatment. The total conductivity of Li7La3Zr2O12 films obtained has values of ~10-10 and ~10-7 S cm-1 at 100 and 200 °C, respectively. The method of EPD can be used to obtain solid electrolyte membranes based on Li7La3Zr2O12 for all-solid-state batteries.Lanthanides are critical elements, and their recovery from wastewater increases the availability of these elements and reduces their impacts on the environment. In this study, tentative approaches to extract lanthanides from low-concentration aqueous solutions were investigated. PVDF membranes soaked with different active compounds or synthesized chitosan-based membranes containing these active compounds were used. The membranes were immersed in 10-4 M of aqueous solutions of selected lanthanides, and their extraction efficiency was assessed using ICP-MS. The PVDF membranes showed quite poor results, with only the membrane with oxamate ionic liquid giving some positive results (0.75 mg of Yb, 3 mg of lanthanides per gram of membrane). However, the chitosan-based membranes led to very interesting results, with the maximum concentration factor for the final solution relative to the initial solution being 13 times higher for Yb, which was obtained with the chitosan-sucrose-citric acid membrane. Several of the chitosan membranes, namely the one with 1-Butyl-3-methylimidazolium-di-(2-ethylhexyl)-oxamate, could extract around 10 mg of lanthanides per gram of membrane, with the better one being the membrane with sucrose/citric acid that achieved more than 18 mg/g of membrane. The use of chitosan for this purpose is a novelty. Since these membranes are easily prepared and have a very low cost, practical applications can be envisaged after further studies to better understand the underlying mechanism.This work offers an ecologically friendly and facile approach for the modification of high-tonnage commercial polymers, including polypropylene (PP), high-density polyethylene (HDPE), and poly(ethylene terephthalate) (PET), and preparation of nanocomposite polymeric membranes via incorporation of modifying oligomer hydrophilic additives, such as poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), polyvinyl alcohol (PVA), and salicylic acid (SA). Structural modification is accomplished via the deformation of polymers in PEG, PPG, and water-ethanol solutions of PVA and SA when mesoporous membranes are loaded with oligomers and target additives. The content of target additives in nanocomposite membranes is controlled by tensile strain, and the level of loading can achieve 35-62 wt.% for PEG and PPG; the content of PVA and SA is controlled by their concentration in the feed solution. This approach allows for the simultaneous incorporation of several additives which are shown to preserve their functional performance in the polymeric membranes and their functionalization. The porosity, morphology, and mechanical characteristics of the prepared membranes were studied. The proposed approach allows an efficient and facile strategy for the surface modification of hydrophobic mesoporous membranes depending on the nature and content of target additives, their water contact angle can be reduced to 30-65°. Water vapor permeability, gas selectivity, antibacterial, and functional properties of the nanocomposite polymeric membranes were described.Kef couples the potassium efflux with proton influx in gram-negative bacteria. The resulting acidification of the cytosol efficiently prevents the killing of the bacteria by reactive electrophilic compounds. While other degradation pathways for electrophiles exist, Kef is a short-term response that is crucial for survival. It requires tight regulation since its activation comes with the burden of disturbed homeostasis. Electrophiles, entering the cell, react spontaneously or catalytically with glutathione, which is present at high concentrations in the cytosol. The resulting glutathione conjugates bind to the cytosolic regulatory domain of Kef and trigger activation while the binding of glutathione keeps the system closed. Furthermore, nucleotides can bind to this domain for stabilization or inhibition. The binding of an additional ancillary subunit, called KefF or KefG, to the cytosolic domain is required for full activation. The regulatory domain is termed K+ transport-nucleotide binding (KTN) or regulator of potassium conductance (RCK) domain, and it is also found in potassium uptake systems or channels in other oligomeric arrangements. Bacterial RosB-like transporters and K+ efflux antiporters (KEA) of plants are homologs of Kef but fulfill different functions. In summary, Kef provides an interesting and well-studied example of a highly regulated bacterial transport system.This review is conducted against the background of nanotechnology, which provides us with a chance to effectively combat the spread of coronaviruses, and which primarily concerns polyelectrolytes and their usability for obtaining protective function against viruses and as carriers for anti-viral agents, vaccine adjuvants, and, in particular, direct anti-viral activity. This review covers nanomembranes in the form of nano-coatings or nanoparticles built of natural or synthetic polyelectrolytes--either alone or else as nanocomposites for creating an interface with viruses. There are not a wide variety of polyelectrolytes with direct activity against SARS-CoV-2, but materials that are effective in virucidal evaluations against HIV, SARS-CoV, and MERS-CoV are taken into account as potentially active against SARS-CoV-2. Developing new approaches to materials as interfaces with viruses will continue to be relevant in the future.Ultrafiltration (UF) has been proven effective in removing algae during seasonal algal blooms, but the algal cells and the metabolites can induce severe membrane fouling, which undermines the performance and stability of the UF. Ultraviolet-activated sulfite with iron (UV/Fe(II)/S(IV)) could enable an oxidation-reduction coupling circulation and exert synergistic effects of moderate oxidation and coagulation, which would be highly preferred in fouling control. For the first time, the UV/Fe(II)/S(IV) was systematically investigated as a pretreatment of UF for treating Microcystis aeruginosa-laden water. The results showed that the UV/Fe(II)/S(IV) pretreatment significantly improved the removal of organic matter and alleviated membrane fouling. Specifically, the organic matter removal increased by 32.1% and 66.6% with UV/Fe(II)/S(IV) pretreatment for UF of extracellular organic matter (EOM) solution and algae-laden water, respectively, while the final normalized flux increased by 12.0-29.0%, and reversible fouling was mitigated by 35.3-72.5%. The oxysulfur radicals generated in the UV/S(IV) degraded the organic matter and ruptured the algal cells, and the low-molecular-weight organic matter generated in the oxidation penetrated the UF and deteriorated the effluent. The over-oxidation did not happen in the UV/Fe(II)/S(IV) pretreatment, which may be attributed to the cyclic redox Fe(II)/Fe(III) coagulation triggered by the Fe(II). The UV-activated sulfate radicals in the UV/Fe(II)/S(IV) enabled satisfactory organic removal and fouling control without over-oxidation and effluent deterioration. The UV/Fe(II)/S(IV) promoted the aggregation of algal foulants and postponed the shift of the fouling mechanisms from standard pore blocking to cake filtration. The UV/Fe(II)/S(IV) pretreatment proved effective in enhancing the UF for algae-laden water treatment.The major facilitator superfamily (MFS) of transporters consists of three classes of membrane transporters symporters, uniporters, and antiporters. Despite such diverse functions, MFS transporters are believed to undergo similar conformational changes within their distinct transport cycles, known as the rocker-switch mechanism. While the similarities between conformational changes are noteworthy, the differences are also important since they could potentially explain the distinct functions of symporters, uniporters, and antiporters of the MFS superfamily. We reviewed a variety of experimental and computational structural data on a select number of antiporters, symporters, and uniporters from the MFS family to compare the similarities and differences of the conformational dynamics of three different classes of transporters.The 6FDA-based network PI has attracted significant attention for gas separation. A facile strategy to tailor the micropore structure within the network PI membrane prepared by the in situ crosslinking method is extremely significant for achieving an advanced gas separation performance. In this work, the 4,4'-diamino-2,2'-biphenyldicarboxylic acid (DCB) or 3,5-diaminobenzoic acid (DABA) comonomer was incorporated into the 6FDA-TAPA network polyimide (PI) precursor via copolymerization. The molar content and the type of carboxylic-functionalized diamine were varied in order to easily tune the resulting network PI precursor structure. Then, these network PIs containing carboxyl groups underwent further decarboxylation crosslinking during the following heat treatment. Properties involving thermal stabilities, solubility, d-spacing, microporosity, and mechanical properties were investigated. Due to the decarboxylation crosslinking, the d-spacing and the BET surface areas of the thermally treated membranes were increased. Moreover, the content of DCB (or DABA) played a key role in determining the overall gas separation performance of the thermally treated membranes. For instance, after the heating treatment at 450 °C, 6FDA-DCBTAPA (32) showed a large increment of about ~532% for CO2 gas permeability (~266.6 Barrer) coupled with a decent CO2/N2 selectivity~23.6. This study demonstrates that incorporating the carboxyl-containing functional unit into the PI backbone to induce decarboxylation offers a practical approach with which to tailor the micropore structure and corresponding gas transport properties of 6FDA-based network PIs prepared by the in situ crosslinking method.Outer membrane vesicles (OMVs) are miniature versions of gram-negative bacteria that contain almost the same content as their parent cells, particularly in terms of membrane composition. Using OMVs as biocatalysts is a promising approach due to their potential benefits, including their ability to be handled similarly to bacteria while lacking potentially pathogenic organisms. To employ OMVs as biocatalysts, they must be functionalized with immobilized enzymes to the OMV platform. Various enzyme immobilization techniques are available, including surface display and encapsulation, each with advantages and disadvantages depending on the objectives. This review provides a concise yet comprehensive overview of these immobilization techniques and their applications in utilizing OMVs as biocatalysts. Specifically, we discuss the use of OMVs in catalyzing the conversion of chemical compounds, their role in polymer degradation, and their performance in bioremediation.Thermally localized solar-driven water evaporation (SWE) in recent years has increasingly been developed due to the potential of cost-efficient freshwater production from small-scale portable devices. In particular, the multistage SWE has attracted much attention as the systems possess mostly a simple foundational structure and high solar-to-thermal conversion output rates, enough to produce freshwater from 1.5 L m-2h-1 (LMH) to 6 LMH. In this study, the currently designed multistage SWE devices were reviewed and examined based on their unique characteristics as well as their performances in freshwater production. The main distinguishing factors in these systems were the condenser staging design and the spectrally selective absorbers either in a form of high solar absorbing material, photovoltaic (PV) cells for water and electricity co-production, and coupling of absorber and solar concentrator. Other elements of the devices involved differences such as the direction of water flow, the number of layers constructed, and the materials used for each layer of the system. The key factors to consider for these systems include the heat and mass transport in the device, solar-to-vapor conversion efficiency, gain output ratio (representing how many times the latent heat has been reused), water production rate/number of stages, and kWh/number of stages. It was evident that most of the studied devices involved slightly different mechanisms and material compositions to draw out higher efficiency rates from the current limitations. The reviewed designs showed the ability to be adopted into small-scale solar desalination allowing for accessibility of sufficient freshwater in needing regions.In this study, biodegradable starch film was developed from pineapple stem waste as a substitute for non-biodegradable petroleum-based films for single-use applications where strength is not too demanding. High amylose starch from a pineapple stem was used as the matrix. Glycerol and citric acid were used as additives to adjust the ductility of the material. Glycerol content was fixed at 25% while that of citric acid varied from 0 to 15% by weight of starch. Films with a wide range of mechanical properties can be prepared. As more citric acid is added, the film becomes softer and weaker, and has greater elongation at the break. Properties range from a strength of about 21.5 MPa and 2.9% elongation to a strength of about 6.8 MPa and 35.7% elongation. An X-ray diffraction study showed that the films were semi-crystalline. The films were also found to be water-resistant and can be heat-sealed. An example of a single-use package was demonstrated. A soil burial test confirmed that the material was biodegradable and completely disintegrated into sizes smaller than 1 mm within one month.Understanding the higher-order structure of membrane proteins (MPs), which are vital for numerous biological processes, is crucial for comprehending their function. Although several biophysical approaches have been used to study the structure of MPs, limitations exist owing to the proteins' dynamic nature and heterogeneity. Mass spectrometry (MS) is emerging as a powerful tool for investigating membrane protein structure and dynamics. Studying MPs using MS, however, must meet several challenges including the lack of stability and solubility of MPs, the complexity of the protein-membrane system, and the difficulty of digestion and detection. To meet these challenges, recent advances in MS have engendered opportunities in resolving the dynamics and structures of MP. This article reviews achievements over the past few years that enable the study of MPs by MS. We first introduce recent advances in hydrogen deuterium exchange and native mass spectrometry for MPs and then focus on those footprinting methods that report on protein structure.Membrane fouling remains a major obstacle to ultrafiltration. Due to their effectiveness and minimal energy demand, membranes have been extensively employed in water treatment. To improve the antifouling property of the PVDF membrane, a composite ultrafiltration membrane was created employing the in-situ embedment approach throughout the phase inversion process and utilizing a new 2D material, MAX phase Ti3ALC2. The membranes were described using FTIR (Fourier transform infrared spectroscopy), EDS (energy dispersive spectroscopy), CA (water contact angle), and porosity measurements. Additionally, atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy (EDS) were employed. Standard flux and rejection tests were applied to study the produced membranes' performance. Adding Ti3ALC2 reduced composite membranes' surface roughness and hydrophobicity compared to the pristine membrane. Porosity and membrane pore size increased with the addition up to 0.3% w/v, which decreased as the additive percentage increased. The mixed matric membrane with 0.7% w/v of Ti3ALC2 (M7) had the lowest CA. The alteration in the membranes' properties reflected well on their performance. The membrane with the highest porosity (0.1% w/v of Ti3ALC2, M1) achieved the highest pure water and protein solution fluxes of 182.5 and 148.7. The most hydrophilic membrane (M7) recorded the highest protein rejection and flux recovery ratio of 90.6, which was much higher than that of the pristine membrane, 26.2. MAX phase Ti3ALC2 is a potential material for antifouling membrane modification because of its protein permeability, improved water permeability, and outstanding antifouling characteristics.The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl- (always present in phosphorus-containing waters) and H2PO4- anions. Separated ions of the same charge sign move in an electric field through the pores of a nanoporous membrane to the corresponding electrode, while a commensurate counter-convective flow in the pores is created by a pressure drop across the membrane. It has been shown that EBM technology provides high fluxes of ions being separated across the membrane as well as a high selectivity coefficient compared to other membrane methods. During the processing of solution containing 0.05 M NaCl and 0.05 M NaH2PO4, the flux of phosphates through a track-etched membrane can reach 0.29 mol/(m2×h). Another possibility for separation is the EBM extraction of chlorides from the solution. Its flux can reach 0.40 mol/(m2×h) through the track-etched membrane and 0.33 mol/(m2×h) through a porous aluminum membrane. The separation efficiency can be very high by using both the porous anodic alumina membrane with positive fixed charges and the track-etched membrane with negative fixed charges due to the possibility of directing the fluxes of separated ions in opposite sides.Biofouling refers to the undesirable growth of microorganisms on water-submerged surfaces. Microfouling, the initial state of biofouling, is characterized by aggregates of microbial cells enclosed in a matrix of extracellular polymeric substances (EPSs). In seawater desalination plants, filtration systems, such as reverse-osmosis membranes (ROMs), are affected by microfouling, which decreases their efficiency in obtaining permeate water. The existing chemical and physical treatments are expensive and ineffective; therefore, controlling microfouling on ROMs is a considerable challenge. Thus, new approaches are necessary to improve the current ROM cleaning treatments. This study demonstrates the application of Alteromonas sp. Ni1-LEM supernatant as a cleaning agent for ROMs in a desalination seawater plant in northern Chile (Aguas Antofagasta S.A.), which is responsible for supplying drinking water to the city of Antofagasta. ROMs treated with Altermonas sp. Ni1-LEM supernatant exhibited statistically significant results (p less then 0.05) in terms of seawater permeability (Pi), permeability recovery (PR), and the conductivity of permeated water compared with control biofouling ROMs and those treated with the chemical cleaning protocol applied by the Aguas Antofagasta S.A. desalination plant.Therapeutic proteins are recombinant proteins generated through recombinant DNA technology and have attracted a great deal of interest in numerous applications, including pharmaceutical, cosmetic, human and animal health, agriculture, food, and bioremediation. Producing therapeutic proteins on a large scale, mainly in the pharmaceutical industry, necessitates a cost-effective, straightforward, and adequate manufacturing process. In industry, a protein separation technique based mainly on protein characteristics and modes of chromatography will be applied to optimize the purification process. Typically, the downstream process of biopharmaceutical operations may involve multiple chromatography phases that require the use of large columns pre-packed with resins that must be inspected before use. Approximately 20% of the proteins are assumed to be lost at each purification stage during the production of biotherapeutic products. Hence, to produce a high quality product, particularly in the pharmaceutical industry, the correct approach and understanding of the factors influencing purity and yield during purification are necessary.