Week-Cadaverine-Lysine-Biofilm-Decarboxylase-Activity-d

Материал из ТОГБУ Компьютерный Центр
Перейти к: навигация, поиск

Regression indicated that PI and GCF exudation were positively related to biofilm lysine after OHR, unless biofilm lysine exceeded the minimal blood plasma content, in which case PI was further increased but GCF exudation was reduced. CONCLUSIONS: After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. Elucidating the genetic basis of crystalline biofilm formation in Proteus Proteus mirabilis forms extensive crystalline biofilms on urethral catheters that occlude urine flow and frequently complicate the management of long-term-catheterized patients.

Here, using random transposon mutagenesis in conjunction with in vitro models of the catheterized urinary tract, we elucidate the mechanisms underpinning the formation of crystalline biofilms by P. mirabilis. Mutants identified as defective in blockage of urethral catheters had disruptions in genes involved in nitrogen metabolism and efflux systems but were unaffected in general growth, survival in bladder model systems, or the ability to elevate urinary pH. Imaging of biofilms directly on catheter surfaces, along with quantification of levels of encrustation and biomass, confirmed that the mutants were attenuated specifically in the ability to form crystalline biofilms compared with that of the wild type. However, the biofilm-deficient phenotype of these mutants was not due to deficiencies in attachment to catheter biomaterials, and defects in later stages of biofilm development were indicated. For polysaccharide blocking-deficient mutant, the disrupted gene (encoding a putative multidrug efflux pump) was also found to be associated with susceptibility to fosfomycin, and loss of this system or general inhibition of efflux pumps increased sensitivity to this antibiotic. Furthermore, homologues of this system were found to be widely distributed among other common pathogens of the catheterized urinary tract.

Overall, our findings provide fundamental new insight into crystalline biofilm formation by P. mirabilis, including the link between biofilm formation and antibiotic resistance in this organism, and indicate a potential role for efflux pump inhibitors in the treatment or prevention of P. mirabilis crystalline biofilms. Seebio Colanic acid compound mutans-derived extracellular matrix in cariogenic oral biofilms. and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria.

The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. This study evaluated the efficacy of glycone (myricitrin, hesperidin and phloridzin) and aglycone flavonoids (myricetin, hesperetin and phloretin) in inhibiting biofilm formation by Staphylococcus aureus RN4220 and S.

 aureus SA1199B that overexpress the msrA and norA efflux protein genes, respectively. The minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC50 - defined as the lowest concentration that resulted in ≥50% inhibition of biofilm formation) of flavonoids were determined using microdilution in broth procedures. The flavonoids showed MIC >1024 μg/mL against concentrations (1-256 μg/mL) showed inhibitory effects on biofilm formation by these strains. Aglycone flavonoids showed lower MBIC50 values than their respective glycone forms.